DIAGONAL MATRIX SCALING AND H-MATRICES
نویسندگان
چکیده
منابع مشابه
Applications of max algebra to diagonal scaling of matrices
Results are proven on an inequality in max algebra and applied to theorems on the diagonal similarity scaling of matrices. Thus the set of all solutions to several scaling problems is obtained. Also introduced is the “full term rank” scaling of a matrix to a matrix with prescribed row and column maxima with the additional requirement that all the maxima are attained at entries each from a diffe...
متن کاملEla Applications of Max Algebra to Diagonal Scaling of Matrices
Results are proven on an inequality in max algebra and applied to theorems on the diagonal similarity scaling of matrices. Thus the set of all solutions to several scaling problems is obtained. Also introduced is the “full term rank” scaling of a matrix to a matrix with prescribed row and column maxima with the additional requirement that all the maxima are attained at entries each from a diffe...
متن کاملSpecial H-matrices and their Schur and diagonal-Schur complements
It is well known, see [D. Carlson, T. Markham, Schur complements of diagonally dominant matrices, Czech. Math. Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant , as well as its diagonal-Schur complement. Also, if a matrix is an H-matrix, then its Schur complement and diagonal-Schur complement are H-matrices, too, see [J. Liu, Y. Huang, Some properties on...
متن کاملDiagonal K - matrices and transfer matrix eigenspectra associated with the G ( 1 ) 2 R - matrix
We find all the diagonal K-matrices for the R-matrix associated with the minimal representation of the exceptional affine algebra G (1) 2. The corresponding transfer matrices are diagonalized with a variation of the analytic Bethe ansatz. We find many similarities with the case of the Izergin-Korepin R-matrix associated with the affine algebra A (2) 2 .
متن کاملBlock Diagonal Matrices
For simplicity, we adopt the following rules: i, j, m, n, k denote natural numbers, x denotes a set, K denotes a field, a, a1, a2 denote elements of K, D denotes a non empty set, d, d1, d2 denote elements of D, M , M1, M2 denote matrices over D, A, A1, A2, B1, B2 denote matrices over K, and f , g denote finite sequences of elements of N. One can prove the following propositions: (1) Let K be a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Apllied Mathematics
سال: 2015
ISSN: 1311-1728,1314-8060
DOI: 10.12732/ijam.v28i5.1